铁门关
loading
立即发布信息
·铁门关 [切换]

    问题:综合分析法

    时间:2023-07-04 15:00:41  编辑:同城资讯  来源:资讯   网站投稿
        综合分析法是矿产勘查工作中普遍采用的科学方法。一般分为三个步骤。第一步要将矿产勘查工作作为一个系统,将可能获得的原始资料尽可能地收集到一起;第二步将材料按有关要求通过综合加以.

    综合分析法是矿产勘查工作中普遍采用的科学方法。一般分为三个步骤。第一步要将矿产勘查工作作为一个系统,将可能获得的原始资料尽可能地收集到一起;第二步将材料按有关要求通过综合加以分类归纳整理成系统资料;第三步对加工整理的材料作出分段谈禅析侍和、判断与推理,即作出一定的结论握尘。进行综合分析的过程,是一个“去粗取精、去伪存真、由此及彼、由表及里”的加工制作过程。

    什么是综合分析法
    综合分析法

    一、综合分析法

    综合分斗颂棚析法是指运用各种统计综合指标来反映和研究社会经济现象总体的一般特征和数量关系的樱棚研究方法。
    常使用的综合分析法有综空则合指标法、时间数列分析法、统计指数法、因素分析法、相关分析等。

    二、综合分析方法

    综合分析方法是以遥感填图方法为主,同时结合地球物理、岩石同位素资料进行综合分析,建立划分填图单元的一种方法。其应用的目的在于使填图单元建立划分的更加准确,地质信息提取的更加丰富,并从不同角度解决填图问题。
    (一)遥感填图方法
    影像单元法、影像岩石单元和单元-剖面法是贯档樱穿遥感填图全过程的方法技术。运用这些方法是从遥感技术角度解决1∶25万填图的技术问题,使填图成果精度符合相应的技术规范要求。其解决填图问题的实质是通过研究、分析不***质地质体的宏观影像分区及微观影像变化规律,进行地质体性质判定和填图单位种类划分及构造信息的提取与类型划分。它们所能够解决的地质问题或地质现象均属于地球表面的直接显示出的信息,即表层信息提取。但对于大量的隐伏地质信息的提取,受其方法技术自身限制难以全面实现,如隐伏断裂和隐伏岩体及花岗岩类侵入体的时代等等。因此,结合其他技术方法的应用,从不同角度,取长补短,丰富地质填图成果,使其更加符合地质作用规律。
    (二)地球物理技术方法
    该方法是遥感地质填图综合分析研究的首选技术方法。主要通过地球物理资料如航磁、重力处理数据的分析、解释,并根据地质体的磁性特征、密度特征变化规律,着重解决隐伏断裂、隐伏岩体和火山机构的圈定。解决遥感技术和物探技术在1∶25万遥感地质填图应用中解释地质问题的层次和深度。现以内蒙古得尔布干覆盖地区和新疆阿尔金裸露地区为例加以叙述。
    1.内蒙古得尔布干地区重磁场特征分析
    1)岩石磁性特征分析
    通过2000年6~9月,对阿龙山地区进行的岩石磁性测量工作,其中实地测量了岩石露头27处,获得磁化率数据327个;测量岩石标本712块,获得磁化率数据2872个。区内岩石(地层)的磁性特征如下。
    (1)变质岩类磁性特征
    区内出露的元古宇变质岩岩性为花岗岩片麻岩、黑云斜长变粒岩、片岩及千枚岩、大理岩等。磁测定结果反映出元古宇地层的磁性普遍很弱,磁化率值变化范围在(0~380)×10-5SI,平均值仅为60×10-5SI。
    (2)盖层磁性特征
    阿龙山地区的盖层主要为一套中生界火山岩地层,该套地层的磁性特征如下。
    火山碎屑岩类一般为弱磁性或具有中等磁性。其中凝灰砂岩、层凝灰岩及含角砾凝灰岩的磁性普遍很弱,磁化率的平均值多在(30~65)×10-5SI之间变化;熔结凝灰岩和英安质、粗安质及安山质凝灰岩的磁性多具有中等磁性,磁化率变化范围在(11~1661)×10-5SI之间,最大可达到3890×10-5SI,平均磁化率值为570×10-5SI。
    中性—基性火山熔岩一般具有很强的磁性,其中粗安岩的磁化率在(15~3390)×10-5SI之间,平均值为886×10-5SI;英安岩的磁化率变化范围在(0~4000)×10-5SI之间,平均值在(590~3000)×10-5SI之间;安山岩的磁化率值范围在(1228~3360)×10-5SI之间,平均值为3012×10-5SI;玄武岩磁化率变化范围在(394~10000)×10-5SI之间,磁化率均值为2281×10-5SI。
    (3)侵入岩磁性特征
    区内花岗岩类搭做的磁性差异较大,其中花岗岩的磁性可分为无磁性花岗岩、弱磁性花岗岩及中等磁性花岗岩。无磁性花岗岩磁化率平均值为40×10-5SI;弱磁性花岗岩平均磁化率为230×10-5SI;中等磁性花岗岩的磁化率变化在(11~1177)×10-5SI之间,磁化率均值为695×10-5SI。花岗斑岩类一般具有中等磁性,磁化率变化范围一般在(19~1311)×10-5SI之间,磁化率均值为545×10-5SI。二长花岗岩和钾长花岗岩的磁化率在(13~3000)×10-5SI之间,磁化率均值为630×10-5SI。因此,除了无磁性的花岗岩外,其他类型的花岗岩类引起的磁异常行枝丛较难区分。
    区内闪长岩类的磁性一般比花岗岩类强度大,其中花岗闪长岩、石英闪长岩的磁化率值范围在(126~3500)×10-5SI之间,平均值为950×10-5SI;闪长玢岩的平均磁化率达1286×10-5SI;闪长岩的磁化率值范围在(614~6300)×10-5SI之间,磁化率平均值可达1900×10-5SI。
    2)岩石密度特征分析
    阿龙山地区岩石及地层密度变化具有以下特征:
    (1)随着地层的时代由新至老岩石的密度值逐渐增大;
    (2)中生界侏罗系火山熔岩地层的岩石密度值比正常碎屑岩类的岩石密度值大;
    (3)下古生界与元古宇的岩石密度值基本相同,中性、酸性侵入岩体的岩石密度则介于侏罗系火山熔岩地层与前中生界(包括下古生界和元古宇)之间,其密度差值约在±0.15g/cm3左右。因此,该地区区域性密度界面是前中生界和中、酸性侵入岩构成的岩石界面,该区域性密度界面与上覆盖层之间存在着0.2~0.7g/cm3密度差;侏罗系火山熔岩与正常碎屑岩是区内的局部密度界面。其间存在0.5g/cm3密度差(表2-4)。
    表2-4阿龙山及周边地区岩石密度统计表
    3)重磁场特征及解释
    阿龙山地区的航磁资料测量比例尺大,飞行高度低,测量精度高,编绘出的ΔT磁场图件包含的各类地质信息非常丰富。
    根据已知地质资料与岩石物性资料对比分析结果,得出如下结论:
    (1)阿龙山地区海西期花岗岩与下古生界和元古宇构成了该地区重要的区性岩石磁性界面及岩石密度界面。中元古界和下古生界磁性很弱,仅海西期花岗斑岩和二长花岗岩及花岗闪长岩、闪长岩具有中等与较强的磁性。
    (2)阿龙山地区区域背景磁场的特征及分布,主要反映区域磁性界面强弱变化与分布特点,降低的负磁场区为下古生界、元古宇及弱磁性的海西期花岗岩分布区;升高的正背景磁异常区则为具磁性的海西期中、酸性侵入岩分布区。
    (3)航磁局部磁异常一般是花岗闪长岩、闪长岩和中、基性火山熔岩及浅成次火山岩,如安山玢岩、闪长玢岩、英安岩等引起。其中花岗闪长岩和闪长岩等引起的局部磁异常形态清晰并且强度较大,比较容易辨认。
    (4)由于火山岩(主要是熔结凝灰岩和中、基性火山熔岩)和浅成次火山岩很不均匀,它们所引起的磁异常在形态和强度变化方面都较大,其分布特点一般呈带状、环状及片状分布。
    (5)不同时代岩石、地层的密度变化具有十分明显的规律性,构成该地区区域性密度界面的元古宇、下古生界及海西期侵入岩体与中生界地层之间存在着0.2~0.7g/cm3密度差。因此,阿龙山地区布格重力图中局部重力异常场的高、低变化应是主密度界面起伏变化或侏罗纪中、基性火山岩的客观反映。
    4)磁场特征及分区
    阿龙山地区的磁场特征及变化十分复杂,为了便于对磁场和磁异常的分类及研究,依据该地区的区域背景磁场及磁异常的性质、形态、强度及梯度变化,以及它们之间的组合分布特点等,划分为三类:
    (1)独立正磁异常及编号
    HA-Ⅰ:该类磁异常的形态呈等轴状或似等轴状,有些异常具有一定的延伸及走向。异常形态规整,强度一般大于500nT,面积一般大于2.0km2。
    HA-Ⅱ:该类磁异常的形态特征与前述磁异常相同,但磁异常的强度比前者弱,异常的强度一般在200~500nT之间。
    推断上述磁异常主要是由具磁性的中、酸性侵入岩体引起,对岩体范围的圈定起参考作用。
    (2)正背景磁场的分区及编号
    a.HB类磁场区特征及编号
    该类磁异常的明显特点是强度较大,一般在200~500nT之间。依据磁异常的形态特征、发育程度及组合分布特点,划分出3个磁场小区:
    HB-Ⅰ:小区内磁异常发育,磁异常的形态以似二度异常为主,即单个磁异常具有明显的延伸及走向,并且没有明显的负值伴生。
    HB-Ⅱ:小区内磁异常的形态及强度特征与前述小区相类似,主要差别仅仅是局部磁异常的发育程度比前者差一些。
    HB-Ⅲ:小区内磁异常的形态与强度变化比较复杂,既存在着等轴状及似等轴状异常,同时也发育有二度及似二度异常,并且局部磁异常存在着明显的伴生负值。
    b.HC类磁场区特征及编号
    该类磁场小区内磁异常形态特征与HB类小区基本相同,它们之间的显著差异主要反映在磁异常的强度方面,该类磁场小区内的磁异常强度变化在100~250nT之间。
    HC-Ⅰ:区内磁异常形态以二度和似二度异常为主,异常发育,强度在100~250nT之间。
    HC-Ⅱ:小区内磁异常形态多以等轴状和似等轴状异常为主,并存在着明显的伴生负值,异常强度一般在100~250nT之间。
    HC-Ⅲ:小区内局部异常较发育,但磁异常的强度比HC-Ⅱ磁场小区磁异常弱,磁异常强度变化在50~100nT之间。
    HC-Ⅳ:小区内局部磁异常不发育,区内正磁场变化平缓单调,强度在50~100nT左右。
    该类磁场小区主要反映的是中、基性火山熔岩及次火山岩类的变化与分布特点,可对填图单位组、段划分对比起到参考作用。
    (3)负背景磁场分区及编号
    a.LA类磁场小区特征及编号
    该类磁场小区内局部磁异常发育程度及变化较大,负背景磁场变化平缓,磁场值在-50~-150nT之间。
    LA-Ⅰ:小区内的局部磁异常不发育,负背景磁变化平缓、单调,磁场强度在0~-100nT之间。
    LA-Ⅱ:小区的负背景磁场强度变化在0~-100nT之间,局部磁异常较前磁场小区发育,但局部异常强度较弱,异常幅值变化在50~100nT之间。
    LA-Ⅲ:小区内背景磁场变化在-50~-150nT之间,局部异常发育,异常的幅值变化一般在50~200nT之间。
    LA-Ⅳ:小区内背景磁场强度变化在-100~-150nT之间,局部磁异常发育且强度较大,异常幅值变化一般在200~500nT之间。
    b.LB类磁场小区特征及编号
    与LA类磁场小区相比较,LB类磁场小区的主要特点是背景磁场强度明显偏弱,背景磁场强度值一般在-200nT以上。结合该类磁场区内局部异常发育程度及特征,可分为如下次级小区。
    LB-Ⅰ:小区内的背景磁场强度在-200~-250nT之间,其变化特征平缓、单调,区内局部异常不发育。
    LB-Ⅱ:小区内背景磁场强度可达-300nT以上,局部磁异常较发育,异常幅值变化在50~150nT之间变化。
    LB-Ⅲ:小区内背景磁场强度变化在-150~-250nT之间。局部磁异常发育,其幅值变化在100~250nT之间,并存在着明显的伴生负值。
    该类磁场小区主要反映的是火山碎屑岩类夹沉积岩分布特点。其中小区内不同强度的局部异常则反映了次火山岩的存在及发育状况,可为填图单位、岩石大类划分提供参考作用。
    5)断裂构造及重、磁异常特征
    断裂构造在重、磁场图中反映出的标志特征十分明显,它们反映出的重、磁场标志特征主要有:不***质重、磁场区及不同特征重、磁异常区之分界线;重、磁场线性梯度带;线性重、磁异常带或串珠状线性重、磁异常带;串珠状线性重、磁异常带和重、磁异常带之错动或扭动线等。
    6)侏罗系地层厚度及分布特征
    通过前面岩石、矿物的磁性特征分析可知,阿龙山地区的前中生界是该地区的区域性岩石密度界面,它与上覆侏罗系之间存在着0.2~0.7g/cm3的密度差。因此,局部重力场的变化主要反映了区域性密度界面起伏及侏罗系地厚的厚度变化等信息,局部重力高一般是基岩隆起或凸起的反映,局部重力低则反映出基岩凹陷的分布特点。据此,通过对重力局部异常进行深度计算并结合已知地质资料,编制出阿龙山地区侏罗系地层厚度分布图。由于使用的重力资料比例尺小、精度低,深度计算误差可能在±20.0%左右。
    阿龙山地区侏罗系的厚度变化及分布特点反映基岩起伏变化呈现出凹隆相间分布的构造格局,其宏观走向呈北东向展布。即阿南-阿北林场凹陷,秀山-汗马基站隆起,乌力依特林场-防火站凹陷。阿南-阿北林场凹陷的沉积中心位于阿北林场附近,侏罗系地层厚度可达1.5km,向南有逐渐减薄的趋势;乌力依特林场-防火站凹陷存在着两个沉积中心,即乌力依特林场沉积中心和防火站沉积中心,沉积中心内侏罗系地层的厚度可达2.0km,在两沉积中心之间被一个次级基岩凸起隔开。此外,在约安里林场和源江林场等处,还分别存在着两个侏罗系地层厚度达2.0km和1.5km的沉积中心。
    7)火山机构群及分布特征
    阿龙山地区侏罗系火山岩地层分布广、厚度大,说明该地区在中生代时期曾发生过强烈的岩浆喷溢活动,火山机构广泛发育。我们知道,在岩浆喷溢过程中靠近火山口处不但堆积了巨厚的火山熔岩,而且也是次火山岩比较集中发育的地段,这就为利用航磁圈定火山机构提供了可靠的地质前提条件。岩石磁性测定结果证明,阿龙山地区的火山熔岩和次火山岩一般都具有较强的磁性,具备了利用航磁圈定火山机构的地球物理前提条件。航磁资料结合已知地质资料分析对比结果表明,火山机构在磁场上具有明显的磁异常反映,一般中心喷发式的火山机构引起的磁异常形态呈等轴状或似等轴状,既有正磁异常也有(因近体磁化原因引起的)负磁异常;裂隙溢出式的火山机构引起的磁异常形态多呈二度磁异常及磁异常带。磁异常的强度及大小主要与火山熔岩及次火山岩的磁性强弱及规模大小有关,一般中、基性火山熔岩及安山玢岩、辉长、辉绿玢岩、闪长玢岩等引起的磁异常强度较大,中、酸性火山熔岩及英安岩引起的磁异常相对较弱。上述与火山机构有关的磁异常在阿龙山地区一般呈带状或片状群出现,为我们研究分析该地区火山机构群类型及分布提供了重要依据。
    依据火山机构群表现出的磁场特征在阿龙山工区共圈定出火山机构群22处。区内火山机构群的规模大小及分布具有以下特点:以内蒙古得尔布干断裂为界其北侧的火山机构群规模一般较小,并且具有明显的延伸及走向,反映出火山机构明显地受断裂所控制。另外,各火山机构群内单个火山机构反映出的磁异常形态主要是以等轴状或似等轴状异常为主,说明得尔布干断裂西北侧的火山活动主要是以中心喷发式为主。分布在得尔布干断裂东南侧的火山机构群规模一般较大,其形态多为片状,各火山机构群内单个火山机构的磁异常形态变化比较复杂,既存在着等轴状及似等轴状磁异常,也存在着具有一定延伸和走向的二度磁异常及磁异常带,反映出得尔布干断裂东南侧火山活动形式既存在着中心喷发式,同时也存在着裂隙溢出式的岩浆活动,而且次火山岩比较发育。说明在得尔布干断裂东南侧火山机构非常发育,岩浆的喷、溢活动强烈。
    重力资料反映,区内的火山机构群主要分布在重力高异常(或异常带)与重力低异常(或异常带)的转换部位,上述部位恰是基底断裂所通过的位置。
    2.新疆阿尔金地区磁场特征分析
    由于阿尔金山地区只有1∶50万航磁资料,受其精度所限,对该地区的研究,设想从区域性航磁磁场分区、区域磁场和局部异常分析三个方面入手,解决沉积岩地层,沉积-火成岩地层、变质岩地层、花岗岩类侵入体的空间分布与宏观影像岩石单元间的关系;解决构造轮廓及区域构造格架,以及隐伏岩体与单元的关系。具体分析内容及方法如下:
    1)岩石磁性特征
    区内基性、超基性侵入体具有很强的磁性,因此该类侵入体一般可以引起较强的磁异常。经过与已知地质资料分析对比,阿尔金山地区不同时代的基性或超基性岩体均有明显的磁异常反映。如出露在研究区内的石棉矿(东经88°30′、北纬38°20′)超基性岩体、辉长岩体(东经87°10′、北纬38°05′;东经88°25′、北纬38°10′)都存在着明显的局部磁异常与之对应。受基性、超基性岩体规模的限制,该类岩体所引起的磁异常规模及强度变化较大,其形态一般呈等轴状或似轴状,强度一般在150~200nT,最大可达500nT以上(茫崖镇岩体)。
    中、酸性侵入体引起的磁异常一般呈等轴状或似等轴状,异常的规模一般比基性、超基性岩体引起的磁异常规模大,强度一般在100~200nT。
    由火山岩引起的磁异常形态一般具有二度异常及线状异常带特征,说明区内火山分布受断裂控制。
    2)磁场分区及地质解析
    依据瓦石峡幅航磁ΔT磁场图中区域磁场表现出的(正、负)外貌特征及强度、梯度变化,以及次级叠加磁异常的形态特征与发育程度,将该区划分为如下4个次级磁场小区。
    Ⅰ宽缓变化负磁场区;
    Ⅱ宽缓变化正、负磁场区;
    Ⅲ叠加局部磁异常的负磁场区;
    Ⅳ条带状正、负变化磁场区。
    岩石磁性资料结合地质资料分析结果表明,阿尔金山地区存在着两个十分明显的磁性界面。其中区内的太古宇—元古宇变质基底构成了该地区的区域性磁性界面,该磁性界面所引起的区域背景磁场具有较好的稳定性和连续性。区内另外一个磁性界面则是由不同时期的岩浆侵入体或火山岩等所构成的局部磁性界面,由于该磁性界面的稳定性与连续性都很差,因此它们所引起的磁(场)异常一般表现出很大的差异与离散性。上述局部磁性界面所产生的形态各异和强度多变的磁异常叠加分布在区域背景磁场中,这样就使得磁场的形态及外貌特征变得复杂起来。
    阿尔金山地区太古宙中的强磁性变质岩主要是由正变质岩构成,其原岩主要为中、基性的岩浆岩类;太古宙副变质岩一般具有弱磁性或不具磁性。阿尔金山地区元古宇地层中也分布有具有磁性的变质岩系,但其磁性强度要比太古宇中的强磁性变质岩弱很多,说明以上两类变质岩在原岩性质及物质成分上存在着较大差别,推断具有中等磁性的元古宇变质岩类其原岩多为中、酸性岩浆岩,或者是在变质过程中混入了中、酸性岩浆岩成分。因此,阿尔金山(瓦石峡地区区域背景磁场特征及分布主要是揭示出了该地区结晶基底的岩性,即基底岩相变化。升高的正磁场和强度很大的正背景磁异常分布区反映为强磁性正变质岩分布区;降低的负磁场区则为副变质岩(Ⅰ:宽缓变化负磁场区,Ⅲ:叠加局部磁异常的负磁场区)分布区;在降低的负磁场中所显示出的升高磁场区(Ⅳ:条带状正、负变化磁场区)为中等磁性变质岩分布区。叠加在区域背景磁场中的局部磁异常或磁异常带主要是不同时期的岩浆侵入体和火山岩的反映,它们的分布特点及发育程度揭示出了瓦石峡地区在断裂及岩浆活动方面存在的差异。例如在Ⅰ、Ⅱ号磁场小区内的局部磁异常很不发育,说明瓦石峡幅西北部的岩浆活动特别是海西运动以来的岩浆活动对该地区的影响甚微;在Ⅲ磁场小区可以看到局部异常较发育,局部异常的形态一般为等轴状或似等轴状,磁异常的强度一般也比较弱。推断该磁场小区内的局部异常主要为中、酸性侵入体引起,反映出Ⅲ号磁场小区的岩浆活动方式是以侵入活动为主;Ⅳ号磁场小区内的局部异常非常发育,并且异常的强度及形态变化也表现得十分复杂,揭示出该小区的岩浆活动比较强烈、频繁,不同时期的岩浆成分及性质差异较大,并且岩浆活动方式也十分复杂,既存在着岩浆侵入活动,同时也存在着规模较大的岩浆喷溢活动。所以,瓦石峡研究区的磁场特征及分布,深刻地揭示出了该地区的基底结构与岩相分布特征,以及岩浆活动特点等情况。
    3)基底断裂及特征
    研究结果证明,断裂在磁场上一般具有以下几种标志特征:
    (1)不***质(正、负)磁场区及不同形态磁异常区分界线;
    (2)磁场线性梯度带;
    (3)线性正(或负)磁异常带及串珠状线性磁异常带;
    (4)磁场与磁异常带的错(或扭)动带。
    断裂在磁场上所表现出的上述特征标志对我们分析、判断断裂规模及性质具有十分重要的意义。其标志特征表现为不***质磁场区或不同形态磁异常区分界线的断裂,不但对基底结构及岩相分布具有控制作用,而且反映断裂两侧的岩浆活动也具有较大差异,说明断裂的规模大并对区域地质发展及构造演化起到控制作用;反映为线性磁异常带或串珠状线性异常带等磁场标志特征的断裂,则说明沿着断裂有岩浆侵入体和火山岩分布,揭示出该类断裂一般切割的深度大,对岩浆活动具有控制作用;表现出磁场或线性磁异常带的错动带标志特征的断裂,则为我们提供了断裂两侧曾发生过相对运动的有关信息。
    总之,断裂在磁场上所表现出的特征标志是比较复杂的,它可以表现出一种磁场标志特征,也可以同时反映出两种或两种以上的标志特征。
    3.遥感与航磁成果吻合性影响因素分析
    遥感地质解译与航磁解释成果经常表现出诸多的不一致性,主要表现在同一地质体的形态、位态的不同。究其原因表现在以下几个方面:
    1)遥感和航磁资料的多解性
    地质体在特定条件下会存在异物同(光)谱(或同谱异物)和位场等效效应现象,这是造成遥感及航磁解译(释)结果呈现出非惟一性,即多解性的原因。多解性现象的存在不但增大了资料解释的工作量与难度,而且还可能会造成解释结果中某些不确定因素同时增多。遥感和航磁成果中存在着的不确定因素往往会对两者成果之间的对比分析造成困难,并对成果的吻合性产生明显的影响,因此,遥感与航磁技术方法本身及成果中所存在的多解性问题,往往是引起两者的解释成果在吻合性(一致性)方面存在差别的主要影响因素之一。
    2)成果解译(释)理论、方法方面存在的差异
    遥感与航磁的成果解译(释)理论和方法方面存在的差别及其对成果吻合性影响包括两个方面:
    (1)研究及实践结果证明,依据解译(释)理论及方法所获得的遥感与航磁成果在没有得到野外检查验证之前都是推断性成果。因此,解译(释)成果本身与实际情况之间所存在的不确定性,将会影响到遥感与航磁成果的吻合性(一致性)。
    (2)目前正在广泛使用的遥感与航磁的成果解译(释)理论和方法是一套各自完全独立的工作系统,两者之间不存在任何的内在联系。遥感技术具有直观性和可视性等特点,有利于资料的对比分析,这样就使得遥感解译成果中的推断性成分较少。相比之下,航磁资料解释,特别是在对磁异常进行定量解释过程中,必须给出磁化强度的大小、方向及磁性体的形状等参数,而上述参数在一般情况下都是通过试验及分析对比或是逻辑推理方法确定的,造成航磁成果中的推断分析成分所占的比重相对较大。因此,遥感与航磁的成果解译(释)方法之间存在的差异,是影响遥感与航磁成果吻合性的主要因素之一。
    3)地质体的复杂性
    地表所保留的地质体是长期、复杂地质作用的结果。它们对遥感与航磁成果吻合性的影响及其产生的原因主要与技术方法本身的特点有关。研究及分析结果表明,对于复杂的地质及构造现象,不同的技术方法一般只能够揭示出它们的某一个侧面。例如,对一条深大断裂,遥感资料可以依据断裂显示的地形、地貌特征、色调和影纹等的差异,可以很直观地揭示出该断裂在地表的位置及延伸方向。而航磁则是依据断裂磁场特点(多反映为线性磁异常带或串珠状线性磁异常带)来判断出断裂的延深及展布。由于受断裂控制的磁性体(一般为岩浆岩类)的分布情况比较复杂,它们的宏观展布方向虽然与断裂的走向一致,但它们并不一定在断裂之中,而是往往沿着断裂带及其两侧排列分布,说明航磁资料中还包含有反映断裂的深部信息的成分。从而造成遥感资料反映出的断裂和航磁资料圈定出的断裂在平面位置上存在着一定的偏离现象。因此,宏观地质体的复杂性也是影响遥感与航磁成果吻合性的重要因素之一。
    (三)同位素测年资料
    同位素测年资料是确定地质体形成时代或年龄的依据。它可通过收集前人资料获取,也可通过同位素样品采集分析获取。无论采用哪种方式收集,均有利于花岗岩类侵入体填图单元年龄和断裂形成年龄的判定。测年方法比较多,有U/Pb法、Rb/Sr法、K/Ar法、40Ar/39Ar法、14C法、电子自旋共振(ESR)法等。
    铀-铅法根据238U/206Pb和235U/207Pb衰变进行测年,其样品一般采用晶质铀矿或沥青铀矿、锆石、独居石等。
    铷-锶法根据87Rb/87Sr的β衰变进行测年。这种方法可广泛地利用全岩进行测定,除富含铷的矿物外,还可以利用钾长石、云母类矿物和铷含量为10-2%~10-3%的酸性岩。
    钾-氩法和氩-氩法测年可以采用的矿物较多。包括钾长石类、云母类、角闪石类、辉石类和海绿石等。
    14C法利用炭质粘土岩类和植物等样品进行测年。
    在使用上述不同方法测年数据时,应注意数据适用性。
    总之,遥感地质解译与航磁地质解释资料的综合分析利用是遥感地质填图成果的丰富、补充与相互验证,由于这两种方法技术揭示地质体层次不同,即遥感以表层地质现象为主,航磁以深部地质结构为主,所以在解释结果利用过程中应视具体情况具体分析。一般情况下,对第四纪覆盖区的隐伏断裂解译及利用局部异常圈定隐伏侵入岩体,航磁解释优于遥感解译结果,图面地质内容应以航磁解译结果为主体。但对于填图单元解译划分,裸露区断裂解译,应以遥感技术为主体,充分发挥其直观、宏观技术特性。而航磁ΔT异常分区分析与遥感宏观影像单元分区具有相应的结合性,可通过磁场分区强度判定岩类范围。对同位测年数据主要与影像岩石单元结合,采用定位对比或直接使用以确保单元建立划分合理,序列归并准确。

    免责声明:本站部分内容转载于网络,其中内容仅代表作者个人观点,与本网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。
    本站联系邮箱:599911198#qq.co m